EINLADUNG THORAKOSKOPIEKURS 20. - 22. OKTOBER 2022 HALLE (SAALE)

KRANKENHAUS ST. ELISABETH & ST. BARBARA

Management of Pneumothorax (PTX): the role of thoracoscopy

Prof. Marios Froudarakis, MD, PhD, Head, Department of Pulmonology University Hospital of Saint-Etienne, Fr marfroud@gmail.com

Spontaneous pneumothorax (SP): classification

- 1. SP
 - primary SP (PSP):
 - no known underlying lung disease
 - secondary SP (SSP):
 - COPD, Tbc, catamenial, cystic fibrosis etc.
- 2. latrogenic/traumatic

How can we better manage PSP!

- Difficult question
 - Controversies
 - Definitions
 - Recommendations
 - Beliefs

Controversies in PTX

Treat a large PTX: Definition of a large PTX

Size PTX(%)=(1-D_L³/D_H³) x 100

Controversies in the guidelines!

Figure 2 Flowchart of management of spontaneous pneumothorax.

•McDuff A et al. BTS guidelines. Thorax 2010;65(sup2):ii18=31

Management of first episode of PSP

- Therapeutic choices in PSP
 - Remove air from the pleural space
 - Which is the best option to remove air?
 - Observation (do nothing)?!

Noppen et al. AJRCCM 2002;165:1240-4 Thelle A et al, Eur Respir J 2017;49:1601

Marquette CH et al. Eur Respir J 2014; 43:582 Brims & Maskell. Thorax 2013; 68:664-9

Stradling P, Pool G. Thorax 1966;21:145 Brown SGA et al. NEJM 2020;382:405

KRANKENHAUS St. Elisabeth & St. Barbara

Vanderschueren concept of PSP (1980)

- Stage I: normal
- Stage II: small blebs
- Stage III: bullae < 2 cm
- Stage IV: bullae > 2 cm

rupture of bulla?

What is the cause of recurrences?

After bullectomie, recurrence rates are still significant, which means that the problem is not only the bullae/blebs

Courtesy of Pr Olivier Tiffet (St-Etienne)

Courtesy of Prof. Marc Noppen

PSP: Facts of pathophysiology

- CT Scans
 - 70 100% sub-pleural blebs (« empysema-like changes » -ELC 's) in PSP
- ELC 's bilateral in patients with sternotomy
 - (Gobbel 1963, Barnofsky 1957, Ikeda 1988, Donahue 1993, Miltlehner 1992, Lesur 1990)

Courtesy of Pr Olivier Tiffet (St-Etienne)

PSP: Facts of pathophysiology

Noppen M. Am J Respiratory Care Med 2004;170:680-682

Courtesy of Pr Marc Noppen

Respiratory Bronchiolitis (RB) in PSP patients?

2 KRANKENHAUS ST. ELISABETH & ST. BARBARA

- Retrospective study in 79 pts
- Results:
 - RB: 70/79 (89%)
 - Interstitial abnormalities: 53/79 (67%)

Cottin V et al. Eur Respir J 1998;12:702

PSP: inflammation of the pleura?

De Smedt Eur Respir J 2004;23:896

n = 29 PSP - 30 controls

Table 1.-Lavage cell counts

	PSP per mm ³	CONTR per mm ³	p-value
WBC	1973 (547-3040)	159 (74-214)	< 0.001
NEU	384 (59-1052)	1 (0-2)	< 0.001
EO	243 (120-635)	0 (0-0)	< 0.001
BASO	22 (3-48)	0 (0-0)	< 0.001
LYMPH	102 (46-201)	27 (14-60)	0.024
MACR	671 (268-919)	118 (47-146)	< 0.004
MESO	10 (0-35)	0 (0-2)	0.034

Absolute cell counts per mm³ in lavage fluid of primary spontaneous pneumothorax (PSP) patients and controls (CONTR) are expressed as median (interquartile range: 25–75). WBC: white blood cell counts; NEU: neutrophils; EO: eosinophils; BASO: basophils; LYMPH: lymphocytes; MACR: macrophages; MESO: mesothelial cells.

Tschopp JM et al. ERS guidelines. ERJ 2015;46:321

PSP: Where is the leak ?

The cause is probably a diffused and extended process of inflammation of the pleura and destruction of the adjacent pulmonary parenchyma

PSP recurrences: facts

- Overall (drainage including)
 - 30% (16-57%)

Schramel et al. Eur Resp J 1997

- So, 70% no recurrence
- Recurrence depends on
 - Time: 2 yrs after 1st episode
 - Smoking
- Recurrence does not depend on
 - Patient's age
 - The importance of PSP

Recurrence rates after treatment of bullae: Bullectomy vs Pleurodesis

- VATS Bullectomy alone 25 pts : 20% recurrences
 Bullectomy + Pleurodesis 24 pts : 4% recurrences
 (cyclin) Loubani, Respir Med 2000; 94: 884
- VATS Bullectomy alone 72 pts : Pleurodesis alone - 37 pts : (talc)
- VATS Bullectomy alone 50 pts : Bullectomy + Pleurodesis - 53 pts: (electrocauthery)

: 4% recurrences Loubani, Respir Med 2000; 94: 888 6% recurrences 0% recurrences Hatz, Ann Thor Surg 2000; 70: 253

16% recurrences

1.9% recurrences Horio, Surg Endosc 2002; 16: 630

Treatment of bullae

Tschopp JM et al. ERS Statement. Eur Respir J 2015;46:321-35

Bleb/bullectomie should not be performed routinely

- Not more efficient
- Increase cost
- The leak is not necessarily due to a bleb
- No firm proof

ERS Statement 2015. Surgical procedures

TABLE 5 Surgical procedures for persistent or recurrent primary spontaneous pneumothorax

Strategy	Comment
Routine excision of the apex of the lung	Controversial
Selective excision of blebs of bullae	pulmonologists; general agreement among
Bullectomy	Controversial But better results than bullae
Coverage of staple line with absorbable mesh	To be confirmed
Electro- or cold coagulation of blebs and bullae	Controversial
Endobronchial valves to close persistent air leak	Still anecdotal
Talc poudrage	95% success rate at follow-up; not advisable as sole treatment in cases of significant bullae

ERS Statement 2015. Recurrence prevention and definitive management: Pleurodesis

TABLE 3 Indications for definitive management of primary spontaneous pneumothorax (PSP)

Second episode of PSP Persisting air leak >3–5 days Haemopneumothorax Bilateral pneumothorax Professions at risk (aircraft personnel, divers)

- Talc poudrage with graded talc is safe and the most costeffective approach to obtain a diffuse chemical pleurodesis
- Surgical approach: VATS is preferred to open thoracotomy

EINLADUNG

HALLE (SAALE)

THORAKOSKOPIFKURS

20. - 22. OKTOBER 2022

KRANKENHAUS St. Elisabeth & St. Barbara

What to do in case of persistent air-leak / recurrence? So, why don't we simply perform thoracoscopic pleurodesis to these patients?

Tschopp JM, Schnyder JM, Froudarakis M, Astoul P. Eur Respir J 2009;33:442-3

Treatment of complicated PSP by <u>simple</u> talcage under thoracoscopy

- Spontaneous Pneumothorax PSP n=65;
- Short term success rate:
- Mean duration of follow up:
- Long term success rate
- No serious complication

Tschopp et al, Thorax 1997;52:329

PSP n=65; SSP n=28

90/93 (97%)

5.1+3.4 (1.5 - 9.2) yrs

80/84 (95%)

Talc pleurodesis by medical thoracoscopy

<u>Author</u>	<u>n</u>	<u>failure/relapse</u>
Boutin 1985	100	5 %
Boutin 1991	505	7.3 %
Viskum 1989	99	2.5 %
El Kahwand 1995	200	6 %
Tschopp 2002	59	5%
Gyorik 2007	56	5%

Hallifax R et al, Thorax 2017;72:1121

Talc pleurodesis by medical thoracoscopy in PTX

• Under deep sedation

Kostroglou A, Kapetanakis EI, Rougeris L, Froudarakis ME, Sidiropoulou T. <u>Review of the Physiology and Anesthetic Considerations for</u> <u>Pleuroscopy/Medical Thoracoscopy.</u> Respiration. 2021 Sep 9:1-15

Yes, but is this cost-effective?

European randomized controlled study:

Simple Talcage under thoracoscopy (TT) versus drainage (D)

- n = 108 -> 2 groups: TT versus D
- Failures after 5 years
 - TT= 5% vs D=27% (p < .01)</p>
- No difference in complication rates
- No difference in immediate costs
- Total Cost TT < Cost D (considering recurrences)

Costs[#] of hospitalisation and total costs[#] per patient for thoracoscopic and pleural drainage

	Thoracoscopic talcage	Pleural drainage
Professional (time \cdot day ⁻¹ min)		
Physician (10)	60.20±35	53.05 ± 28
Nursing care (120) [¶]	501.35±288	441.50±237
Materials		
Radiographs	254.15 ± 168	232.25 ± 106
Blood tests	83.15±34	75.60
Drugs	10.75±13	$4.65\!\pm\!5$
Dressings and chest tube	8.35±6	7.90±5
Clothing and cleaning	24.80 ± 14	21.85 ± 12
Food	126.25 ± 77	115.15±62
Secondary talcage procedure [§]		78.40
Total hospitalisation costs	1069.00 ± 635	1030.35 ± 455
Total costs ^f	1461.10±635	$1080.60 \pm 455^+$

ST. ELISABETH & ST. BARBARA

Immediate costs

Simple talc poudrage under medical thoracoscopy is more cost-effective than a simple chest tube treatment

Tschopp JM et al, Eur Respir J 2002;20:1003

Secondary SP (SSP)

- Simple aspiration: less successful
- Prevention of recurrencies as much as possible: (RR of SSP 50%)
- Thoracoscopic talc poudrage success rate same as PSP: 95%

Noppen M. Eur Respir J 1997;10:412-417 Tschopp JM. Thorax 1997; 52: 329-332

Yes, but is this risky?

Thoracoscopy in COPD with PNO

Table 2—Procedures, Hemodynamic Changes, Complications, Mortality, and Success*

Variables	Values
Median time to thoracoscopy, d	4 (range, 3-5)
Median dose of midazolam, mg	2 (range, 1-2.8)
Hemodynamic changes	-
Before thoracoscopy	
Heart rate, beats/min	81 ± 9
Systolic BP, mm Hg	120 ± 12
Sao ₂ , %	94 ± 2
During thoracoscopy	
Heart rate, beats/min	107 ± 16
Systolic BP, mm Hg	136 ± 10
Sao ₂ , %	91 ± 2
Vanderschueren stage	
1	21 (51)
2	2 (5)
3	5 (12)
4	13 (32)
Complications	
Fever	5 (12)
Pain	13 (32)
Cough	26 (63)
Subcutaneous emphysema	27 (66)
Immediate success, %	100
Long-term success, %	95
Mortality at 30 d	4 (10)

FEV ₁ , L	Cause of Death	Days Post-MT
0.50	AMI	1
0.70	Pneumonia	13
0.55	COPD	14
0.60	Pneumonia	17

Deaths due to

- Respiratory status
- Comorbidities

Thoracoscopy in COPD with PNO

Table 1—Demographics of Patients with COPD and SP*

Variables	Values
Patients, No.	41
Mean age, yr	70.7 ± 7.2
Gender	
Men	38
Women	3
Pack-years	52.8 ± 22.3
FEV ₁	
L	0.88 ± 0.28
% predicted	41 ± 14
FVC	
L	1.70 ± 0.42
% predicted	60 ± 14
FEV ₁ /FVC, %	52 ± 12
Body mass index, kg/m ²	17.2 ± 3.0
Functional status	
NYHA class 3	15 (37%)
NYHA class 4	26 (63%)
Fitness for thoracoscopy	
ASA grade 3	15 (37%)
ASA grade 4	26 (63%)
Median postoperative chest tube drainage, d	4 (range, 3-6.5)
Median length of stay, d	5 (range, 4-7.5)

• 41 Patients with PSP due to COPD were recruited for

pleuroscopy and talc poudrage under local anaesthesia

Pain scores, safety and outcome

*Values given as mean ± SD, unless otherwise indicated.

Lee P, et al. Chest 2004; 125: 1315-20

Why increased mortality in such patients

KRANKENHAUS ST. ELISABETH &

Froudarakis M et al, Respiration 2010;80:220

Conclusion: Thoracoscopic pleurodesis

- ✓ <u>Simple</u> talc pleurodesis by thoracoscopy is a safe, mini-invasive and cost-effective technique to prevent recurrences of SP in selected patients
- ✓ Need of deep sedation
- ✓ Treatment of PSP or SSP: prevention of recurrences

EINLADUNG THORAKOSKOPIEKURS 20. - 22. OKTOBER 2022 HALLE (SAALE)

KRANKENHAUS ST. ELISABETH & ST. BARBARA

Thank you Jean-Marie marfroud@gmail.com

Pr Jean-Marie Tschopp